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Formulas are given for the number  and statistical weights of reaction pathways 
f rom one molecular  conformation to another  via a given transition state. 
Arbi t rary  mechanistic assumptions can be incorporated into this enumeration.  
These formulas arise as straightforward generalizations of an expression for 
the number  of double cosets in any group, which can be proven in one line 
using Burnside 's  lemma. 

K e y  w o r d s :  C o m b i n a t o r i c s  - Reaction pathways - Burnside's l emma - Double  
cosets. 

The systematic enumerat ion of rearrangement  pathways has traditionally been 
carried out using one of two general classes of counting procedures: those arising 
f rom Burnside's  l emma and Pdlya's theorem [1-7] and those arising from the 
double coset formalism [8, 9]. The purpose of this note is to show that these 
two methods are intimately related in that Burnside's lemma can be used to 
provide simple proofs of several formulas for the numbers  of double cosets, and 
that this relationship can be exploited to generalize rearrangement  counting 
formulas to count reactions through a given transition state employing a given 
mechanism. A particularly appealing feature of this use of Burnside's lemma is 
that all the enumerat ion formulas so produced have a striking formal similarity. 

Of course, the particular concentration here on enumerat ion of Leaction pathways 
is not meant  to obscure the considerable body of literature on other combinatorial  
problems in chemistry, of which references [10-16] provide a small sampling. 

* Current address: Department of Mathematics, C-012, University of California at San Diego, La 
Jolla, CA 92093, U.S.A. 



196 T.J. McLarnan 

Let  F be a finite group permuting the elements of a finite set S. Define an 
equivalence relation, - ,  on S by letting s l - s 2  if and only if for some 3' � 9  
3,sl = s2. Let  f~ be the set of equivalence classes, called F-orbits. Then Burnside's 
lemma says that the number of equivalence classes is given by the formula 
[Ftl=Y~v~rl{s�9 where for any set X, IX] denotes the number of 
elements of X. This can also be written as ]I~ I = ~ v ~ r Y ~ s X ( y s  = s), where X 
(statement)--1 if the statement is true, and 0 otherwise. Burnside's lemma is 
extremely important in combinatorics generally; P61ya's theorem and its many 
generalizations are special cases of this result. Proofs of Burnside's lemma (which 
are extremely simple) can be found in references [17-20], and references [21, 22] 
present reviews of the use of this and related theorems in the enumeration both 
of isomers and of crystal structures. 

Now let G be any finite group, and let A and B be subgroups of G. If g �9 G, 
the set A g B  = {agb : a �9 A and b �9 B} is called a double coset. It is easy to prove 
that if g, h �9 G then either A g B  = A h B  or A h B  c~ A g B  = Q.  Unlike ordinary 
cosets, however, disjoint double cosets need not have the same number of 
elements. Ruch et al. [8] have shown that the number, z, of double cosets is 
given by 

IGI ,~ IA n C~IIB ~ cr[ 
I<1 (1) 

where the sum runs over all conjugacy classes C, in G. In this formula, A and 
C~ are both subsets of G, and IA ~ C,[ is the number of elements of G contained 
in both A and C,. They also showed that if A and B are the permutation groups 
induced by the point groups of the n atoms in a molecule in the initial and final 
states of some reaction, and if G is the symmetric group 50, of all n ! permutations 
of these atoms, then z counts the polytopal rearrangements between these 2 
states. 

We wish first to show that Eq. (1) can be obtained from Burnside's lemma in a 
one-line argument. To do this, regard the direct product  A • B as a permutation 
group on the set G with the action (a, b)g = agb -1. Under  this action, (A •  = 
{agb: a � 9  b � 9  so the A xB-orbi ts  are exactly the double cosets. By 
Burnside's lemma, these are counted by 

z = IA •  Y, x ( a g b - '  = g )  = LA[-I IB[ -* Y x ( g - ~ a g  = b) 
a,b,g a,b,g 

LGI 
= IA I - t [B I -1  a,b,C, ~" X(a �9 Cr)X(b �9 C,)[C~[ 

--tAIIBI 2 lal 
where 6", runs over the conjugacy classes of G. The third equality in this argument 
arises because g- lag  can equal b only if a and b lie in the same conjugacy class, 
and because if a and b both lie in C,, then the number of g �9 G such that 

- 1  g a g  = b is IG[/IC~[. The alternative proof of Eq. (1) given in [8] is significantly 
more complex. 
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Fig. 1. The derivation of the structures of black P (lower left) and As (lower right) from the simple 
cubic structure (top). Heavy lines in the structures of black P and As represent bonded contacts 
which are shortened with respect to the dashed lines (nonbonded contacts) 

Arguments like this one can easily be used to prove other formulas arising from 
the double coset formalism. For example, formula (4a) of [9], stated there without 
proof, follows from a one line argument even simpler than that above. 

We now consider a chemical problem ir~volving the enumeration of reaction 
pathways in solid state reactions, which can be resolved using a generalization 
of Eq. (1). Molecular examples will be addressed subsequently. 

As shown in Fig. 1, the structures of black P and As can both be derived from 
the simple cubic structure by a bond-breaking process [23, 24]. Phosphorus itself 
is known to occur in all these structures, transforming with increasing pressure 
in the order black P ~ AT(As)-* simple cubic [25]. It is therefore reasonable to 
postulate as in reference [26] that the simple cubic structure might be a transition 
structure between black P and As in the lower pressure transformation. One 
then asks how many reaction pathways there are from black P to As via the 
simple cubic intermediate. Such a reaction consists conceptually of a (bond- 
forming) movement of the atoms to produce 6 equivalent octahedral bonds at 
each site, followed by another (bond-breaking) motion yielding the As type. In 
reality, however, one expects that bonds which are formally formed and then 
rebroken in this process will not actually be altered in the course of the reaction. 
Thus the three reactions shown in Fig. 2, which involve breaking 2, 6 and 10 
bonds, respectively, might be expected to have very different barriers. That is, 
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Fig. 2. The three possible reactions from the black P to the As structure via a simple cubic transition 
state. The structure at the top is black P, and all three drawings at the bottom show the As structure 
(in the middle drawing it is rotated 90 ~ with respect to the other two). The left path involves breaking 
and reforming 2 bonds per 8 atom unit cell, the central path, 6 bonds, and the right path, 10 bonds 

the actual transition states of these reactions would probably not be simple cubic, 
but might be sufficiently close to simple cubic to be identified with it for conceptual 
purposes. Another  way of phrasing all of this is to say that the transition state 
is regarded as a symmetric state with memory.  

To give a more  mathematical  description of this process, observe that both the 
black P and As structures can be regarded as colorings of the edges of the 8 
a tom superstructure of the simple cubic structure in two colors, "bond"  and "no  
bond"  [23, 24]. All the colorings of these edges can be permuted  in the natural 
way by the space group Pm3m of the simple cubic parent  structure, and the 
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colorings representing one of these structures form a single Pm3m-orbi t .  A 
reaction from black P to As can then be represented by a pair of colorings (ca, c2) 
where Cl lies in oJa = Pm3m(ca), the orbit of all colorings representing black P, 
and c2 ~ 0)2 represents As. If 3' is an element of Pm3m, then (3'cl, 3'c2) and (ca, c2) 
represent equivalent reactions, so to enumerate  reaction pathways we must count 
equivalence classes. 

In general, then, let F be a finite group permuting a finite set S, which we will 
normally regard as a set of colorings of some symmetrical transition state. Let  
0)1 and 0)2 be two F-orbits in S, and let F act on 0)a • via 3'(fa, f2)=  (3"fl, 3'fe) 
for any f l  ~ 0)1, f2 ~ 0)2. Let  Cl ~ 0)1 and c2 ~ 0)2, and let Fa and F2 be the automorph- 
ism groups of ca and c2, respectively, in F (i.e. F~ -- {7 ~ F: 3,cl = ci}). By Burnside's 
lemma, the number lal of F-orbits in 0)a • 0)2 is given by 

Inl--Irl -a 2 2 r~ X(T(fl,f2)=(fl, f2)) 
3"eF fl~oJ1 /2~co2 

"y~F /1Coo 1 J I-f2~ro2 

Now any fa ~ 0)a can be written f l  = 3"oC a for exactly I Fal choices of 3'0 ~ F. Further, 
3'3"ocl = T0ca r = clr 3"oa3'3"o ~ F> Thus 

~, X(3"fa =fl)  = Ird -1 r. x(3'oa3"3"o ~ ra) = Iral -a ~ IG rd,  
fl  "yo~F 

where C~ is the conjugacy class of 7 in F. Substituting this and the corresponding 
expression for the sum over 0)2 into the expression for If~l yields 

Irl r. I c , ~ r d l c , ~ r ~ l  
l a l -  IFIlIF2I c ,  IGI ' (a) 

the sum running over all the conjugacy classes in F. Observe that while this 
formula is formally identical to Eq. (1) or to that of Ref. [9], the interpretation 
given it is new. It is regarded as counting reaction pathways from a crystal or 
molecule of symmetry Fa to one of symmetry F2 via a transition state of symmetry 
F _~ F1 u F2 and having the property that the initial and final states have unique 
representations as orbits of colorings of the transition state. 

The statistical weight of a reaction (cl, c2) in 0)1• can also be calculated 
simply. To count the reactions equivalent to (Cl, c2), i.e. those in F(Cl, c2), we 
note that 3"(Ca, C2)=(Ca, C2) if and only if 7 e F a n F 2 ,  so that Ir(ca, c2)l= 
Irl/Ira ~V21. Further, 7Cl = ca if and only if 7 ~ Fa, so I0)11 = Ircd = Ir l / I rd ,  and 
Io,1 • = IrlVIrallr21. Thus, the fraction of reactions in 0)1 x0)2 equivalent to 
(ca, c2), i.e. the statistical weight of (Cl, c2), is given by Ir(ca, c~)l/I0)a• 
I r l l l r d / I r l ~ r d l r [ .  In this formula, F1 and F2 are the symmetry groups of Cl 
and c2, respectively, so different choices of (ca, c2) in 0)a x0)2 result in different 
values for Ira n rzl, and hence, different statistical weights. 

The arithmetic involved in applying Eq. (2) to the problem of reactions from 
black P to As is contained in the Appendix. We give here a simpler molecular 
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Fig. 3. The distortion of a cube to form a 
dodecahedron. In this distortion, one of the 
cube's constituent tetrahedra is elongated 
and the other is flattened. The dodecahedron 
thus has point group D2a 

example of this formula's use, the enumeration of pathways from one dodecahe- 
dral cage to another via a cubal intermediate. 

As shown in Fig. 3, a dodecahedron can be regarded as a distorted cube. The 
distortion can be described as a coloring of the vertices of the cube in which the 
colors are vectors connecting corresponding vertices in the cube and in the 
dodecahedron. Of course, most such assignments of vectors to the vertices of a 
cube will not produce dodecahdra. Indeed, all dodecahedra derivable from the 
cube by these small displacements lie in a single orbit of colorings under the 
cube's point group Oh. A dodecahedral rearrangement via a cubal transition state 
consists of moving the atoms back along these vectors to their cubal positions, 
then out along a symmetry-equivalent set of vectors to form a new dodecahedron. 
In an actual reaction the transition state might not be exactly cubic, so 
inequivalent pathways may have different barriers. 

The inequivalent pathways may be counted using Eq. (2) with F = Oh, the point 
group of the cube, and I'1 -- F2 = D2a, the point group of the dodecahedron. The 
arithmetic is shown in Table 1, and the four reactions are shown in Fig. 4. These 

Table 1 

C~ ]C~nDEa[ 
IG nD~al 2 

Ic~l 

E 1 1 
8C3 0 0 
6C2 0 0 
6C4 0 0 
3C~ 3 3 
i 0 0 
6S4 2 Z3 
8S6 0 0 
3O'h 0 0 
6o'a 2 

16 Sum 

The use of formula (2) to count dodecahedral 
rearrangement processes with a cubal transition 
state. The number of these reactions is 

I Oal,~EIc.,~D=.,12 48(16~ 
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Fig. 4. The four dodecahedral rearrangement processes with cubal transition states. The leftmost 
of these represents the identity rearrangement 

four reactions represent only a tiny fraction of the 698 polytopal rearrangements 
which would be obtained if, as in Ref. [9], the group Oh in Eq. (2) were replaced 
by the symmetric group 6e8 of all 8! permutations of the vertices. (This can be 
regarded as corresponding physically to a transition state in which all 8 atoms 
are collapsed to a single point, a configuration having symmetry 6r 

While formula (2) can thus provide a much more refined enumeration than that 
of all polytopal rearrangements, it is still limited by the assumptions that F1 and 
F2 be subgroups of F and that the initial and final states have unique representa- 
tions as orbits of colorings of the transition state. Many reaction processes fail 
to satisfy these conditions. For example, in the Berry process (Fig. 5) for 

1 
2 4 

3 �9 1 ~ 5 

2 4 3 

Fig. 5. The Berry pseudorotational rearrangement of a trigonal bipyramid via a square pyramidal 
transition state. Here and in Fig. 6 the numbers are not atom labels but fixed labels of the sites in 
the framework. Thus, this particular setting of the Berry process can be written (A,p) where 
A = ( 1 4 2 ~ ) ~ a n d p = ( ~ 4 2 2 3 ~ 5  r 1)F. This notation means that, for example, the atom at site 1 of the 
left trigonal hipyramid is taken by A to site 2 in the square pyramid and then taken by p to site 4 
in the right trigonal bipyramid 
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rearranging a trigonal bipyramidal molecule via a square pyramid, the initial 
and final states have symmetry D3h and the transition state has symmetry 
C4v ~O3h. Further,  from the initial state there are three paths to the transition 
state, so that the former cannot be uniquely described as a coloring of the latter. 
Even without these assumptions, however, Burnside's lemma can be used to 
obtain the number of reaction pathways in a form very similar to Eq. (2). 

Suppose that geometr ies / ,  T and F of the initial, transition, and final states of 
a molecule in some reaction are specified, and that Rz, R T  and RF are the rotation 
groups of these states. (The reason for considering the rotation groups rather 
than the full point groups will be discussed below). Suppose further that we are 
given a set A of mappings from I to T which contains the chemically allowed 
transformations from the initial to the transition state, and a set P of allowed 
transformations from the transition to the final state. If the n atomic sites i n / ,  
T and F are numbered in some arbitrary fashion, then the mappings in A and 
P as well as the operations in Rt, RT and RF can be regarded as permutations 
of 1, 2 , . . . ,  n. An element of Rg in which a tom]  is rotated to r(/)  will be denoted 

2 , 
r(2) r(,))~. In the same fashion, an element h of A will be written 
x(2) �9 �9 �9 x(n))rand so on. We shall also follow the convention that multiplica- 

tion operates from left to right, so that 

(r(11) n ~ ' f  1 n ' n / '  
. . .  (r(1)) . .  h ( r (n ) ) ,  r(n)]~kh(1) h �9 r 

defines the action of rAJ Thus, in the Berry process with the labeling in Fig. 5, 
the elements of A are 

(1 
2 4 1 5 r' 2 1 3 5 T' 

(1 2 3 4 ~ ) '  (~ 2 3 4 ~ ) '  

3 5 1 2  T' 3 1 4  T' 

and the 8 similar maps in which 4 --> 1 or 5 -> 1. 

A reaction in this setting is an ordered pair (h, O) in A •  In order to count 
distinct reaction pathways it is necessary to define which of these ordered pairs 
are to be equivalent. The most natural equivalence relation is one defined by 
three conditions: (A, P) -- (r~h, p) for any rz e Rz; (h, p) - (h, prF) for any rF ~ RF;  
and (h, p ) ~  (ArT 1, rTp) for any r r  e R r .  Fig. 6, which shows a representative 
reaction of the Berry process and several equivalent reactions, may help to 
motivate this definition. The three conditions in the definition can also be 
combined into the single condition that for any rr ~ Rt, r r  ~ RT and rF ~ RF, 

(h, p) ~ (rihr T 1, r~pr;~ 1 ). (3) 

1 Actually, to be consistent we should write, for example, not h(r(a)) but lrA. Since it will not 
prove necessary to use such notation below, we have for clarity committed the abuse of defining 
left to right multiplication of permutations in terms of right to left composition of functions. 
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Fig. 6. Four equivalent reactions representing the Berry process. The first is the reaction (A, p) of 
Fig. 5. The second is (rtA, O), where rl is the threefold rotation (~ 2 43 ~ 5 r 3)x; and the third is (A, pry) 
where rF is the same rotation of the final state, (~ ~ 43 ~5 v 3)v. The last is (Afar ~, r~), where rr is the 
fourfold rotation (~ 32 43 ~5 T 2) T of the transition state 

The  equivalence classes in this relat ion can thus be described as Rz x RT x 
Rv-orbi ts  in A x P, where  the pe rmuta t ion  of A x P cor responding  to (rx, rr, rF) 
is defined by (rz, rr, rF)(A, p) = (rzArTcl, rTpr~l). Count ing  the distinct react ion 
pathways  is then equivalent  to count ing these orbits, which can be done  using 
Burns ide ' s  lemma:  

[[]1 = IRr • RT X RF1-1 ~ ~ ~ ~.. ~ x((rrAr~r 1, rrpr~ ~ ) = (A, p)) 
r T  rl  rF A p 

= I R r X R T X R F I  I ~  {~x(r~Ar~ J =  A)}{o~Fx(rTprT~ = P ) } .  

To simplify this expression, note  that  rzAr~ -1 = A r -1 =rz, so ~x,,x(rzAr~J = 
A) = Y,~ X (XrTa -1 e Rz), and 

= l e t  x RT x RFI-* E E x(ArrA-1E R,)  E X (P-lrTP e RF). (4) 
r T k p 
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Further simplification requires some information about the sets A and P. Clearly 
the group action of Rz x RT X RF defined on A • P makes sense only if A = Rt  ART. 
Thus, A can be written as a disjoint union of "double cosets", A =  
R~AoRT �9169  �9 In most practical situations (for example, in 
the case of the Berry process) it is in fact the case that 

A=RzAoRT and P=RTpoRF. (5) 

Let us therefore assume Eq. (5) hold and rewrite Eq. (4). First, it is necessary 
to determine the number of ways in which a given A ~ A can be written as r~Aor~ .1. 
Since riAor~ j = Ao<==>ZorTZo I = r  i, Ao itself has ]AoRTAo 1 nR~ I such representa- 
tions. It is easy to see that the same is true of any other A s A, since rrAor~ .1 = 
~iAof~ 1 <=>?71rzAor~-lfy = Ao. Thus, 

E X (ArTA -1 ~ R~) = IAoRTA o 1 n Rt  [-1 E E X ((l'l/~ 0IT 1 )rr (frA olf~ -1 ) ~ Rt)  
A FT ~t 

= IX0Rr* o 1 c~ R ,  [-llRzl E X(;toeu o 1 ~ R,) 
FT 

IR, I IRrl Ix0Cr~o 1 mR, I, 
I*oRT*o 1 ~R,I IfrTI 

where C~ is the conjugacy class of rT in Rr.  Inserting this and the corresponding 
expression for the sum over P into Eq. (4) yields 

IRTI IXOCrTAO 1 nR,llpolCr~oo nRFI 
Inl = iAoRTAo I c~R, llpolR~oc~gF[ c, TE Icr~l (6) 

Formula (6) closely resembles Eqs. (1) and (2), especially if one recalls that in 
those cases A0 and po could both be taken to be the identity permutation. Indeed, 
Eq. (6) reduces to Eqs. (1) and (2) under the appropriate hypotheses. The validity 
of Eq. (6) depends on that of assumption (5), but even in the event (5) is not 
satisfied, the above argument allows us to write 

IRr[ Ix,C,~X ~ -1 nRtllp;1Cr~Oj c~RpI 
Isql = E IA,RrX~-I nRrllpilR~o, C~RFI E 

where (A~, pj) runs over all pairs of "double coset" representatives in A and P. 

For the sake of completeness, we apply Eq. (6) to the Berry process, even though 
the result that there is up to symmetry only one nonidentity rearrangement is 
perhaps obvious. The groups Rt  and R~ are 03, while R r  = C4. We can take 
Ao to be the map (21 24 ~ 4 ~)~-shown in Fig. 5, andpo to be its "inverse" (31 ~ 3 ~5,)p.r 
The only elements rr or RT such that AorTA o 1 ~ R~ (or, equivalently, p olrTpo ~ Rr )  
are 1 and C~. Thus, formula (6) produces 

, . ,  

as expected. 
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Finally, we consider some other notions of equivalence which might be imposed 
on A xP .  The relation defined by Eq. (3) based on rotation groups rather than 
full point groups was chosen in order to exclude as equivalents of (A, 0) such 
reactions as (gzA, p), (Ag~ 1, g ~ )  and (A, OgF), where gj is an improper operation 
in the point group of state/'. These reactions, which involve a coupling of the 
reaction (A, p) with a reversal of chirality, may not only not be equivalent to 
(A, O), but not be chemically allowed at all. For example, i f / ,  T and F all 
represent a tetrahedral molecule, A and p are the identity, and gr = o-a, one would 
clearly not expect (A, p) to be equivalent to (g~A, p). In at least one case, however, 
some revision of (3) is appropriate. If all three of the point groups Gz, G r  and 
GF of L T and F are achiral and if gi ~ Gi \Ri  for f = L T, F, then (g lhgr  1, gTlog;r I ) 
represents a reaction which is a mirror image of (h, p). Such a reaction should 
have the same barrier as (h, O) and be counted as its equivalent, though in the 
enumeration provided by Eq. (6) they are counted as distinct. 

To effect this new enumeration, replace Eq. (3) by the condition that (h, p) 
(szhs r 1, STpSF 1 ) whenever (si, ST, SF) E g I )'( R T  • RF  U (GI \gz) • (G r  \Rr )  x 
(GF\RF). The same argument used to produce Eq. (6) then results in an expression 
for 111[ as an average of two terms, one equal to Eq. (6) and one equal to the 
expression produced from Eq. (6) by replacing Rr by Gr\Rz,  R r  by G r \ R r ,  RF 
by GF\RF, and the sum over conjugacy classes in R r  by a sum over conjugacy 
classes in G r \ R r .  

Of course, any number of new equivalence relations reflecting the ability or 
inability of particular experimental techniques used to study reactions to deter- 
mine the chirality o f / ,  T or F or to determine other molecular features can be 
written down in this way; and the inequivalent reactions under these new 
definitions can then be determined using Burnside's lemma just as above. 

This note should then demonstrate the utility of Burnside's lemma both as a 
conceptual aid in phrasing enumeration problems and as a tool in the proof of 
such results. It further illustrates that equations formally similar or identical to 
that for the number of double cosets in 6r can be used to obtain not only 
polytopal rearrangements but much more finely detailed counts of reaction paths 
with a given transition state. That  such a wide class of problems can be resolved 
in a single general formalism is an indication of the power of this counting 
technique. 
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Appendix 

Enumeration of Reactions black P-~ simple cubic ~ As. 
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Table 2 
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Ic~ ~ r~llq ~ rd  

1 1 1 1 1 
m ( x x z )  12 2 6 1 
2(xx�88 12 2 6 1 
�9 1 1 1  l (4~) 1 1 1 1 
~(~0) 3 1 3 1 
ir  ~ i(O0�88 3 1 3 1 

Sum 6 

The classes which must be considered in using Eq. (2) to count the reaction pathways 
from black P to As. The coordinates of each operation correspond to the original (NaC1) 
cubic unit cell. Thus m is the mirror at x x z  in this cell, r is a translation taking 000 to 
~0 ,  and so on. The total number of reaction pathways is 

[FI 384 
- - . 6 =  . 6 = 3  
Irlllrd 16 .48  

In order that all groups and sets dealt with be finite, we take the quotient 
groups of the space groups of these three idealized structure types with the 
group Pl(2, 2, 2) of translations generated by the 3 orthogonal edges of the 
8 atom (NaC1) cell shown in Fig. 1. The resulting finite groups have orders 
tFl=lPm3m/Pl(2,2,2)]=384, ]Fl[=[Pmna/Pl(2,2,2)]=16, and Ird= 
IR3m/Pl(2, 2, 2)1--48. The elements of F2 are the images of symmetries whose 
linear parts are powers of 3, mirrors m normal to (110) (with respect to the 
NaC1 cell), and 2-fold rotors 2 normal to these mirrors. The only such operations 
which are potentially conjugate to elements of F1 have linear part m, 2, or 33 = i. 
Consideration of these symmetries lets one quickly list all classes Cr in.F such 
that ICr ~ Fdlfr ~ r2l # 0. This is done in Table 2, which summarizes as well the 
rest of the calculation of the number of reaction pathways. The reason'for 
including ir in this Table but not mr and 2r is that m and mr are conjugate in 
F, as are 2 and 2r. The resulting 3 reaction pathways have already been shown 
in Fig. 2. 
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